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Abstract. In recent years, single-cell multimodal data, such as that
obtained through Patch-seq, has enabled increasingly detailed classifica-
tion of neuron subtypes. However, missing data across transcriptomic,
electrophysiological, and morphological features introduces uncertainty
into subsequent analyses, including classification. This research inves-
tigates how various imputation strategies influence the classification of
inhibitory neurons from the mouse primary visual cortex. Focusing on
neuron types Lampb, Pvalb, Sncg, Sst, and Vip, from a widely used
dataset of mouse visual cortex neurons, I compare imputation methods
ranging from traditional statistical techniques to modern deep learning-
based approaches. I hypothesized that deep-learning based imputation
methods will generally outperform traditional techniques in preserving
biologically meaningful variability and subtype distinctions. Specifically,
I hypothesized that accurate imputation improves classification perfor-
mance and reduces uncertainty in subtype assignment. By systemati-
cally evaluating these methods, this work aims to inform best practices
in preprocessing noisy multimodal neuroscience data and enhance the
biological interpretability of resulting classifications.
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1 Introduction

Advances in single-cell analysis have developed neuroscience by enabling multi-
modal profiling of neurons, uncovering the diversity of cell types in the brain.
Techniques like Patch-seq allow researchers to simultaneously capture transcrip-
tomic, electrophysiological, and morphological data from single neurons, pro-
viding a new and comprehensive view of how cellular identity is characterized.
[5]. One of the most significant advancements resulting from this progress has
been the ability to perform multimodal profiling where multiple types of bio-
logical data are collected from the same single cell. This multimodal approach
is particularly valuable in neuroscience, where understanding a neuron’s iden-
tity often requires integrating information across different dimensions: transcrip-
tomic (gene expression), electrophysiological (firing patterns), and morpholog-
ical (shape, structure and connectivity). Among these, the inhibitory neurons
within the mouse primary visual cortex have been extensively investigated due
to their significant contribution to the regulation of cortical activity. Datasets
such as Gouwens et al. [I] provide rich multimodal information, but are often
negatively affected by missing values, a common issue in high-dimensional and
multimodal biological datasets like Patch-seq [6]. These missing values may arise
from technical failures during cell capture, limitations in sequencing depth, or
loss of information during morphological mapping.

The use of machine learning (ML) to
classify neurons into known cell types of-
fers great potential for neuroscience research,
particularly when complex features captured o - ey -
by Patch-seq are being used. ML is al- i@ el dine W* I
ready demonstrating practical impact in med- B - —
ical imaging and diagnostics, for example, a 8
patented method based on symmetry-aware g
deep learning has been developed to de- ~ ﬁ N l/ N @&» pmke
tect early signs of stroke in brain CT scans ~—_ »~ L
[US10163040B2], showing how computational ¢
models are being applied to extract subtle pat- Mo (
terns in biological data [29]. Still, the reliability | | | é@{ _,/_, @f_, e
of these models heavily depends on how miss- /
ing data is addressed, since it is well-known
that the presence of missing values is a nega-
tive effect on classification tasks [33]. Imputation, the process of estimating and
filling missing values, is often seen as the standard preprocessing step. However,
despite evidence that imputation strategies can significantly affect the accuracy
of cell type identification [7], its influence on subsequent classification outcomes
is rarely analyzed. This project investigates how different imputation techniques
impact neuron classification, a question of both computational and biological rel-
evance. The goal is not only to compare imputation methods but to understand
their implications for the scientific interpretation of neuronal identity.

Patch-seq on acute slices

Patch-seq in vivo
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2 Background

Cell types are the basic functional units of an organism. Cell types display diverse
phenotypic properties at multiple levels, making them challenging to define,
categorize, and understand [22]. Figuring out what makes one type different
from another helps us understand how the brain works at a fundamental level.
In this project, the focus is on inhibitory neurons from the mouse visual cortex,
specifically the following subclasses: Lamp5, Pvalb, Sncg, Sst, and Vip. These
subclasses represent distinct inhibitory interneurons, each defined by different
characteristics, molecular profiles and electrophysiological properties.

The dataset is rich but also noisy, with missing values in different parts.
That’s a problem since missing data can alter the classification accuracy signif-
icantly [2]. This issue is particularly critical in multimodal studies, where the
absence of one data type (e.g., gene expression) for a subset of cells can distort
comparisons and reduce the reliability of machine learning models trained to
classify or predict cell types [3]. To deal with that, imputation is widely used
by researchers [4]. That’s why, despite the remarkable potential of multimodal
single-cell datasets like those from Patch-seq, their full value can only be realized
when we apply suitable computational strategies to handle the missing data that
almost always comes with them. This observation leads to the research question
of this study:

“How do different imputation methods affect the classification of
these neuron types using machine learning?”

3 Literature Review & Related Work

3.1 AI/ML Methods and Imputation

In the field of single-cell data analysis, machine learning has become a crucial
approach for uncovering patterns within high-dimensional, noise-prone datasets.
To give an example, machine learning has been successfully applied in identify-
ing cancer cell subpopulations, analyzing therapy-resistant cells, and uncovering
gene expressions in tumor microenvironments through single-cell RNA sequenc-
ing (scRNA-seq) data [8]. However, a significant challenge in these datasets,
especially in multimodal contexts like Patch-seq, is the missing data [6]. Nu-
merous imputation techniques have been proposed to address this issue in both
single-cell and biomedical datasets. Classical methods, such as mean or median
imputation, are simple and widely used but often fail to account for the underly-
ing data structure. For example, basic tasks like KNN-impute estimates missing
values based on the similarity between neighboring samples, also being used in
biological contexts [9]. To go beyond these baseline approaches, more recent deep
learning-based methods have been developed:

e DCA, a denoising autoencoder optimized for scRNA-seq data. [10]

e MICE, a statistical imputation method that models each variable with miss-
ing values as a function of other variables in an iterative chained sequence.
[11]
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e GAIN, a GAN-based imputation strategy that learns to recover missing
values through adversarial learning. [12]

e CL-Impute, which uses contrastive learning to guide biologically meaning-
ful imputation. [13]

e SoftImpute, a matrix factorization-based technique that estimates miss-
ing entries by iteratively approximating the data matrix with a low-rank
decomposition, making it particularly suitable for sparse, high-dimensional
datasets like those found in single-cell experiments. [14]

Despite these advancements, a critical gap remains in understanding how
these imputation choices affect key following tasks such as cell type classifica-
tion. Studies, including that of Ly et al. [I5], have shown that imputation can
significantly alter inferred gene-gene relationships, thereby also altering subse-
quent biological interpretations. Yet, in most studies, imputation methods are
chosen based on computational performance metrics rather than their biolog-
ical impact on tasks such as classification. The term ’biological impact’ refers
to the influence of imputed data on the interpretation of underlying biological
patterns. In many studies, imputation methods are selected based on how fast
or accurate they are computationally, but less attention is given to whether the
results remain biologically meaningful or lead to correct conclusions in tasks like
classifying cells or understanding disease mechanisms. This is especially relevant
for studies that aim to link transcriptomic data with other modalities, such as
morphology and electrophysiology, where each modality might suffer from its
own type and pattern of missingness.

3.2 Neuroscience: Data, Features, and Biological Context

In neuroscience, classifying neurons into cell types is essential for making sense
of the brain’s functional architecture. A powerful technique that supports this
classification is Patch-seq, allowing for rich multimodal characterization of cell
types. Originally developed for use in mouse brain slices, it has become foun-
dational in neuroscience studies that aim to connect gene expression with func-
tional properties at the cellular level [5]. Gouwens et al. [I] used this technique
to profile inhibitory interneurons in the mouse visual cortex and identified well-
defined transcriptomic subclasses such as Lampb, Pvalb, Sncg, Sst, and Vip.
Each of these groups shows characteristic patterns across features, showing how
each type of cell has unique variations in features. In Patch-seq and other mul-
timodal contexts, datasets are often affected by missing values in one or more
modalities, which introduces challenges for analyses such as classification. Scala
et al. [16] further investigated the multimodal structure of the mouse motor
cortex and observed that, although broad cell families such as Pvalb and Sst
remain clearly distinguishable, there exists a continuous gradient of variability
within each individual group. This suggests that classification may not always
be evident, especially when features like morphology or electrophysiology are
incomplete. Lee & Dalley et al. [I7] extended this work to human GABAergic
neurons, showing both conserved and unique properties compared to mice. Their
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study highlighted how missing data and slight subclass differences complicate the
task of building reliable classifiers. In the context of disease, the implications be-
come even more significant. The SEA-AD study [18] found that in Alzheimer’s
disease, certain inhibitory neuron subclasses, specifically Vip+ and Pvalb+, are
selectively vulnerable. Accurate classification is crucial not just for taxonomy
but especially for identifying which cell types are most affected in neurodegen-
erative processes. In this context, accurate classification of neuron types is more
than just an academic exercise, it has real clinical implications. Classification
in medical sciences is very vital as it is a matter of life or death [26]. Misclas-
sifying vulnerable subtypes could mean failing to detect some mechanisms of
cognitive decline or potential targets for therapy in neurodegenerative diseases
like Alzheimer’s.

3.3 Combined Approaches and Gaps in the Literature

Bridging neuroscience and AI/ML is a still developing area. While machine learn-
ing models have been used to classify neurons based on electrophysiology or
transcriptomics, few studies have explored how imputation affects these classifi-
cations. One study done by Vasques et al. [I9] focused on morphological neuron
classification using machine learning. They assessed various algorithms to clas-
sify neurons based on morphological features extracted from histological recon-
structions. Their findings showed that supervised methods, particularly linear
discriminant analysis, achieved superior classification performance, highlighting
the importance of quality data and algorithm selection. For example, Scala et
al. [16] and Lee & Dalley et al. [I7] also used high-quality Patch-seq data but
didn’t examine how imputation might bias cell type assignments. Scala et al.
[16] used k-NN as their main imputation method to keep the data directly re-
lated to their t-SNE embeddings. Lee & Dalley et al. [I7] also used k-NN to
impute their data. One study showed this potential by developing a domain-
adaptive neural network, which is capable of classifying neurons across species,
using only electrophysiological data [20]. Still, the impact of imputation choices
on classification remains an open and important question, especially in complex,
multimodal datasets like Patch-seq.

Moreover, imputation strategies are often applied without considering the
biological structure of the data. In multi-modal settings, this can lead to in-
consistencies between what is reconstructed and what is biologically plausible.
This is especially problematic when missing data isn’t random, for instance,
when morphological reconstructions fail more often in certain cell types. Despite
the importance of this issue, there’s a clear lack of studies that compare dif-
ferent imputation methods in a controlled, biologically grounded setting. While
many studies implement imputation without systematically evaluating its influ-
ence on subsequent analyses, an increasing number have started to acknowledge
the potential implications of the preprocessing choice. For instance, studies by
Shadbahr et al. [21] and Jager et al. [35] discusses the importance of robust impu-
tation methods in the context of machine learning, emphasizing that the choice
of imputation technique can significantly influence model performance. Despite
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these novelties, there still remains a lack of systematic evaluations comparing
different imputation methods in the context of neuronal classification tasks. This
study aims to fill this gap by evaluating multiple imputation techniques on in-
hibitory neurons from the mouse primary visual cortex, assessing how these
choices impact the classification performance both computationally and biologi-
cally. Rather than simply identifying the most accurate technique, the objective
is to understand how different imputation choices shape the resulting biological
interpretations. This gap suggests the need for a systematic comparison of im-
putation methods in a biologically grounded setting. This study addresses this
by evaluating classical and modern imputation strategies for their impact on the
classification. By doing so, I aim to guide future neuroscience pipelines toward
more reliable and biologically meaningful preprocessing strategies.

4 Methods

4.1 Data and Preprocessing

The dataset includes inhibitory neurons from the mouse primary visual cortex
and includes transcriptomic, electrophysiological, and morphological features,
originally containing 4435 samples, including both inhibitory and excitatory neu-
rons. However, excitatory neurons were excluded during preprocessing, follow-
ing the recommendation of an expert neuroscientist supervising this research.
This decision was based on two main considerations. First, excitatory neurons
were severely underrepresented compared to inhibitory types, which could in-
troduce class imbalance and alter model training. Second, excitatory neurons
display some differences compared to inhibitory neurons, potentially affecting
model parameters and weights. Despite the availability of various missing value
imputation methods, the presence of outliers reduces both the precision of the
imputation process and the reliability of biomarker identification [34]. Since the
aim of this study is to focus on capturing the very subtle differences among in-
hibitory neuron subtypes, excitatory neurons were excluded. Lastly, rows with
> 50% missing values were dropped. After filtering out the excitatory cells, the
final dataset contains 4243 inhibitory neurons classified into five subclasses: Sst
(1913), Vip (1026), Pvalb (771), Lamp5 (472), and SNCG (61), see Appendix
A for subclass counts and percentages. This led to the whole dataset containing
8.59% missing values.

As a preliminary step, all random seeds and stochastic parameters were set
to a fixed value of 31, which was also chosen randomly, in order to eliminate the
influence of randomness on the experimental outcomes [23]. Following that the
dataset was split into 2 (90% - 10%, train/validation and test set). The test set
contains 426 samples, exactly 10% of each subclass and also the missing value
percentage is also kept (8.59%). A representative imputation strategy was re-
quired to develop the model without introducing bias from relying on a single
method. To achieve this, a combination of imputation techniques was used based
on missing value thresholds: features with less than 5% missing values were im-
puted with the mean because the missing portion is small enough that the mean
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won’t significantly distort the feature’s overall distribution, those with 5%-20%
missing were imputed with the median due to greater sensitivity to outliers, and
features with more than 20% missing were dropped to avoid introducing bias or
compromising data integrity. This method includes a combination of different
imputation methods, supporting a more generalizable model. After that, highly
correlated feature pairs (|correlation| > 0.9, see Appendix A for the correla-
tion matrix) are removed by keeping the more important one based on feature
ranking. It was determined as shown in Figure 1:

Feature 1 Feature 2 Correlation
FAP_rheobase TS1_rheobase 0.986104
FAP_rheobase TS2_rheobase 0.958476
TS1_rheobase TS2_rheobase 0.977700

Fig. 1. Highly Correlated Feature Group

In this case, FAP _rheobase, T'S1_rheobase, and TS2_rheobase are all highly cor-
related. So, with respect to our rule, the most important feature would be kept.
As seen in Figure 2, FAP _rheboase has a higher importance than the other fea-
tures, so that one is kept, and the other two (TS1_rheobase and TS2 rheobase
are dropped).

Feature Importance
FAP_rheobase 0.030343
TS1_rheobase 0.021526
TS2_rheobase 0.016800

Fig. 2. Importances of a Highly Correlated Feature Group

Dimensionality reduction is analyzed via PCA and UMAP (see Appendix A),
followed by an evaluation of the results. These evaluations helped visualize the
multi-dimensional dataset in a simpler form, making it easier to observe potential
groupings or patterns among neuron types.

4.2 Model Development and Selection

A variety of models were evaluated using AutoGluon with 5-fold stratified cross-
validation and shuffled inputs [24]. The best-performing models were Neural
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Network, XGBoost, and CatBoost. Ultimately, XGBoost was selected due to its
superior consistency and interpretability [25]. The model used is XGBClassi-
fier, from the XGBoost library. Hyperparameter tuning included exploration of
different values of “k” (number of neighbours in SMOTE), learning rates, and
early stopping rounds. The model was trained on the training set (90%, which
also includes the validation set) with the separate test set (10%) to ensure an
unbiased final evaluation. SMOTE was used during training folds (excluding the
majority class) to address class imbalance, explicitly avoiding its application to
the test set to prevent data leakage [30].

4.3 Assessing the Robustness of the Model

The cross-validation resulted in individual fold accuracies between 91.12%, and
93.08%, with a mean of 92.06% and a standard deviation of 0.0077, showing
strong stability. Macro F1 average is also computed as 84%. The classification
report for the full training data showed high precision and recall (> 86%) for ma-
jor classes (Lampb, Sst, Vip, Pvalb), while minority class performance (SNCG)
remained modest (~ 50%), which is expected due to its limited representation.
Confusion matrices were analyzed to capture class-level misclassifications, see
Appendix B. The test set evaluation further confirmed model performance, with
a high accuracy of 92%, and a strong macro F1 score of 0.86. The test set out-
performing the training set in this metric can be seen as a positive sign of good
generalization, suggesting that the model is not overfitting and is capable of
capturing broader patterns that extend beyond the training data. This pipeline
is carefully designed to keep the test results honest and reliable. By applying
SMOTE only to the training data within each fold, and never to the validation
or test sets, it avoids any artificial inflation of performance (eg. data leakage [30]).
This separation ensures that what the model sees during training doesn’t leak
into testing, preserving the integrity of the evaluation and making the results
truly reflective of how the model would perform in real-world scenarios.

4.4 Selection of Imputation Methods

To systematically evaluate the effect of imputation methods, the following meth-
ods were applied to the original dataset:

e Mean-only imputation: Missing values are replaced with the mean of the
values for each feature.

e Median-only imputation: Missing values are replaced with the median of
the values for each feature.

e k-NN imputation: Missing values are imputed based on the values of the
k (n_neighbors = 5) most similar data points.

¢ Constant outlier value imputation: A fixed value well outside the normal
range is used to fill missing entries.

¢ Random non-outlier value imputation: This approach randomly selects
a valid, non-outlier value by choosing an already existing value from the same
feature to replace missing values.
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e Rule-based hybrid imputation: This approach applies mean or median
imputation based on feature-level missingness thresholds and drops features
with excessive missing data.

e MICE (Multiple Imputation by Chained Equations) [1I]: MICE
imputes missing values by iteratively modeling each incomplete feature as
a function of the other variables, producing statistically decent estimates
based on the assumption that the data are missing at random.

e Soft Impute [14]: This method estimates missing values by reconstructing
the data matrix using low-rank approximation, accurately identifying some
patterns within the data.

Each imputed dataset was passed through the same trained XGBoost model,
label encoder and scaler, ensuring all differences in performance can be linked
only to the imputation method, and not to other variables. Also the imputer
and the input columns for each method were stored, and then imported again
for the testing to keep consistency.

4.5 Experimental Pipeline

The dataset was splitted into 5 pairs, each representing a different 80-20 split,
thus covering the whole data. The train and test sets were paired in a way that
they also always contained respectively 80% and 20% of each subtype. Also,
before starting the experiments, the amount of missing values was increased
(randomly chosen cells, excluding subtypes and cell ID) in the training sets.
This resulted in the training sets containing ~ 24.3% missing values, while the
test sets contain ~ 8.59%. This was done to increase the effect of the imputation
methods on the evaluation metrics in the future. The process begins by encoding
the target variable subclass using LabelEncoder, which encodes the categorical
class labels into numerical labels (in this case: 1-5), suitable for model training.
Features such as the raw subclass label and cell IDs are excluded to prevent
leakage. A stratified 5-fold cross-validation strategy is applied to ensure each fold
preserves the original class distribution, which is especially critical given the class
imbalance in the dataset. Within each fold, the data is first split into training and
validation subsets, followed by feature scaling using StandardScaler to normalize
the input range and facilitate faster model convergence. The data is standardized
to have zero mean and a standard deviation (std) of 1. To address class imbalance
during training, SMOTE is applied with the condition sampling strategy “not
majority”, meaning all classes except the majority one are oversampled [28].
This process minimizes class imbalance in the training data, while keeping the
feature space fundamentally the same. Importantly, the imputation parameters
were learned only from the training set and then applied to the test set without
recalculating them. This approach prevented any possible data leakage. After
training, the model makes predictions on the validation set within each fold.
True and predicted labels are taken from all folds to calculate overall performance
metrics. Accuracy for each fold is printed to keep track of how stable the model is
across different subsets of the data, followed by the mean accuracy and standard
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deviation. To have a clearer picture of how the model performs across each
class, a detailed classification report and confusion matrix are also generated,
providing key aspects of class-wise performance. The training set was imputed
using the respective method. For illustration, consider the mean-only imputation
approach:

Each paired set creates a model. So; the model used with the trainl - testl
pair, is called meanmodell in this case. The training set was first imputed us-
ing fit_transform, as the imputer needed to be fitted on the training data. For
example, if a column contains values such as [1, 3, 5, 7, NaN], the missing value
would be filled in with 4, the mean. Following imputation, the XGBoost model
was trained using hyperparameters identified in the preprocessing phase. As ex-
plained above, for the test set, the previously fitted imputer was used via its
transform method only, not re-fitted. This design choice avoids any form of data
leakage. In the current example, even if the test set has a column like [15, 16,
NaN, 12, 14], the missing value would still be filled with 4, not recalculated.
Right after those, the imputed test set is given to the trained model, calling
the same scaler, and label encoder as well. All 5-folds are used to predict by
their respective model. Following this, the average and standard deviations of
the evaluation metrics for each method are calculated.

5 Results

To develop an initial baseline model and establish a general workflow, the dataset
was first split into 90% training and 10% testing, as described earlier in Section
4.1. This step enabled model selection and hyperparameter tuning under stan-
dard conditions. After finalizing the model architecture, a separate evaluation of
imputation methods was conducted. For this purpose, the data was re-split into
80% training and 20% testing, and a 5-fold cross-validation (CV) was performed
on the training portion, as outlined in Section 4.5.

Model performance was assessed using standard metrics (accuracy, precision,
recall, macro F1, and class-wise F1 scores). In addition, statistical significance
between methods was tested using p-values. These p-values then were compared
against every other imputation method used, to show any significant difference
available. To interpret how imputation affects model behavior in detail, and to
get some biological insight, SHAP values were computed [27].

The highest classification accuracy was observed with k-NN (92.03%) and soft
imputation (92.01%), followed by mean, median, and MICE. The constant out-
lier method consistently performed worst (89.18%), indicating it is, expectably,
not a good option for biological datasets where preserving structure is impor-
tant. Precision was highest for random imputation method, this may be caused
by models trained on datasets imputed more randomly may be more prone to
predicting different subclasses instead of relying on the majority classes. Recall
was highest for k-NN and MICE. Macro-F1 scores showed a similar trend: k-
NN (81.65%) and MICE (81.25%) led, with all others ranging from 78.59% to
80.26%, while the constant method dropped significantly to 74.36%. Together,
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these two metrics indicate that k-NN and MICE provide the most stable and
balanced classification performance across major and minority subclasses.

5.1 Statistical Comparison of Accuracy

Pairwise p-value analysis confirms that the constant outlier method performs
significantly worse than all other imputers (p j 0.0001 across the board). This
shows the danger of using biologically implausible values to fill in missing data.
Among better-performing methods, k-NN significantly outperforms both ran-
dom (p = 0.0043) and rule-based (p = 0.0047) imputers, while soft imputation
also shows a significant edge over those two (p = 0.0409 and p = 0.0268, respec-
tively). No statistically significant accuracy differences were observed between
mean, median, and MICE, suggesting these approaches are largely interchange-
able in terms of raw accuracy. However, the clear advantage of distance-based
and matrix factorization approaches like k-NN and soft imputation highlights
their robustness. (figure 3)
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Fig. 3. Comparison of classification accuracy across different imputation methods (left)
and pairwise statistical significance of differences using p-values (right)

5.2 Precision and Recall

Precision and recall generally reinforce the conclusions drawn from accuracy. The
constant outlier method remains significantly weaker in both metrics. Precision
was highest for the random method, potentially due to increased diversity in
feature values, whereas recall was highest for k-NN and MICE. Some significant
pairwise differences appeared, particularly involving soft and rule-based imput-
ers, but overall, these metrics had a limited effect on method rankings. To sum-
marize this, in terms of precision, these imputers may perform similarly enough
to be considered practically equivalent; while recall keeps the constant method
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as a weak outlier and shows some new significant differences among common
methods, highlighting the importance of careful imputer selection when recall is
critical, such as in medical or fraud detection tasks [31] [32].

5.3 Statistical Comparison of Macro-F1

Macro-F1 analysis again places the constant outlier method significantly below
all others. The highest scores were from k-NN and MICE, with no significant
difference between them (p = 0.4721), confirming their ability to handle class
imbalance effectively. Soft imputation, although strong, shows statistically sig-
nificant differences from both k-NN (p = 0.0126) and MICE (p = 0.0295), sug-
gesting its balanced performance doesn’t match that of the top two. Even among
simpler methods, meaningful differences exist: for example, mean vs. k-NN (p =
0.0294) and rule vs. mean (p = 0.0755) show that not all basic imputers behave
similarly. Macro-F1 therefore captures small performance differences that over-
all accuracy may hide, which is crucial in biological contexts where investigating
differences between close subclasses is essential. (figure 4)
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Fig. 4. Comparison of Macro-F1 across different imputation methods (left) and pair-
wise statistical significance of differences using p-values (right)

5.4 Individual Subclass Performances

Although the main performance metric reported in this study is the macro-
averaged Fl-score, the model’s performance across individual subclasses was
also analyzed. However, due to the significant class imbalance (SNCG cells con-
stitute less than 2%), reporting only class-wise accuracies could be misleading.
Therefore, macro-F1, which equally weights all classes, was chosen as the main
evaluation metric. Most of the models showed high macro-fl scores (> 89%) in
all subclasses except SNCG, which was the extreme minority class. Even though
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it’s not the majority class, Lamp5 had an average F1 of 93.5%, leading all other
subclasses. Pvalb returned an average F1 of 89.5%. Sst, the majority class, had
an average F1 of 93%. Vip showed an average F1 of 91.63%. However, perfor-
mance on SNCG (n = 61) was lower compared to the other subclasses, regardless
of imputation strategy, with an average macro F1-score of 30.75%. Even though
a carefully adjusted SMOTE used to help balance the training data, the test sets
were designed by keeping the natural class proportions, causing even a couple
labelling errors leading to this drop in minority class.

5.5 SHAP Analysis

SHAP values were used to analyze feature importances for each cell class across
imputers and to better understand how different imputations affect model inter-
pretation. Results showed that feature influence varies by class and imputation
method, indicating that data completion can subtly affect model predictions. To
illustrate, SHAP plots for Class 0 (Lamp5) and Class 2 (SNCG) using k-NN and
mean imputation from fold 3 are shown below. These two classes were selected to
highlight contrasting scenarios: Lamp5b had the highest prediction performance,
while SNCG had the lowest. The remaining classes are discussed briefly in the
text to maintain conciseness and avoid redundancy. Fold 3 was selected arbi-
trarily among the five cross-validation folds, as there is no systematic pattern or
correlation between fold number and model performance.

For Lamp5 (Class 0), features such as FAP _halfwidth, tau and TS2_halfwidth,
were most impactful under k-NN imputation. Higher FAP_halfwidth and lower
input tau increased the model’s confidence in predicting Lamp5b, while average
values of TS2_haldwidth slightly pushed the model to predict Lamp5 [figure
5]. Under mean imputation, similar features remained important with similar
influences on model prediction, but SHAP values were more tightly clustered,
suggesting reduced variability and sharper decision boundaries [figure 5].

SHAP Summary - Fold 3 - Class D - KNN SHAP Summary - Fold 3 - Class 0 - MEAN

FAP_halfwicth P S ——— o+ —- -
Gu e i e FAP_halfwidth A e
TSI nolfidth <o + e ol —~—
fifit_slope B S e g
x e D
B & o A i -
— -
- .6t slope e
- - B T52_adp_index . i g
- E FAP_up_down_ratio B ’5
o) £ - H
e i
e B
- *>
b od -~
-+ +
- >
- —

Low

T = a1 ¢ 1 31 3 3 5 1 6 1 3 3
SHAP value (impact on model output) SHAP value (impact on model output)

Fig. 5. SHAP Analysis of Lamp5, using KNN (left) and mean imputation (right)



14 Orkun Sefik

In Vip (Class 1), features like FAP_up_down_ratio, FAP peak, and TS1_isi_avg
played the largest roles in k-NN imputation. High values of these features gen-
erally pushed predictions away from this class. Mean imputation produced a
smoother SHAP distribution, varying some features (TS1_up_down_ratio and
FAP_halfwidth rose), with the same influences. For SNCG (Class 2), the three
most influential features under k-NN were FAP _up_down_ratio, TS1_ isi_avg, and
tau, all showing directionally consistent patterns in reducing or increasing the
likelihood of a SNCG prediction [figure 6]. Mean imputation raised the role
of TS1_up_down_ratio, TS2_adp_index and vmbaseM, showing that the model’s
feature importance changed depending on the imputation method [figure 6].
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Fig. 6. SHAP Analysis of SNCG, using KNN (left) and mean imputation (right)

In Sst (Class 3), FAP_up_down_ratio, tau and TS1_up_down_ratio were again
dominant, emerging as consistent top predictors across both imputers. Finally,
for Pvalb (Class 4), the features TS2_up_down_ratio, TS1_trough, and also the
feature TS1_up_down_ratio was the top features with k-NN imputer, with the
higher the value the more the model predicted Pvalb. However, mean imputation
broadened the feature influence, with FAP_rheobase gaining importance.

6 Discussion

The results section conveys a clear message: imputation strategy is not a simple
preprocessing detail but a main determinant of subsequent model behaviour.
The consistent poor performance of the constant outlier method shows that
using biologically meaningless values to impute the data alters the natural rela-
tionships between data points, a deformation the classifier cannot fully unlearn
even with generous data augmentation. In contrast, distance-based (k-NN) and
low-rank-based (soft) imputers kept the natural groupings in the data as well
as hidden feature relationships delivering both the highest accuracies and the
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most interpretable SHAP-based feature profiles. That k-NN and MICE achieved
the strongest recall, while random imputation gave a slight increase to pre-
cision, is a good reminder that model performance is rarely one-dimensional.
What counts as superior depends heavily on context. In scenarios where missing
data aren’t random, and where rare cell types could be crucial to understanding
disease, recall matters more than precision [31] [32]. Macro-F1 highlighted the
strength of k-NN and MICE, but the significant advantage of soft imputation
shows that matrix factorization deserves more attention in electrophysiological
pipelines. Subclass-level results further deepened these insights. High F1 values
for Lampb, Vip, Sst, and Pvalb indicate that, once sufficient data is available,
most reliable imputation methods generally lead to consistent model decisions
Yet the consistently under-represented SNCG class revealed the vulnerabilities
of all methods tested, including the most reliable method: k-NN. Even after ap-
plying SMOTE, the sharp decline in SNCG’s F1 score shows a basic limitation:
no imputation technique can create useful information out of near-empty data.
The interpretability results showed a more detailed insight. Some electrophysio-
logical features stayed consistently influential across imputers, but their relative
importance shifted in small, and sometimes unintuitive ways. However, those
shifts matter: a researcher inferring biological mechanisms from SHAP rank-
ings might land at different biological interpretations depending on the chosen
imputer. For this reason, I argue that any study including feature importance
must explicitly disclose its imputation strategy, ideally supported by sensitivity
analyses that show how interpretations could shift. Two other limitations de-
serve acknowledgement. First, while five-fold cross-validation gives a reasonable
estimation of how well the models might generalize, relying on just one dataset
limits ecological validity. Electrophysiological patterns can vary a lot depend-
ing on brain region, developmental stage, and other biological factors. Second, 1
treated imputers as just simple tools, intentionally keeping hyperparameter tun-
ing minimal to keep variables consistent and avoid introducing unintended bias.
A more detailed grid search could reveal even larger variation in results or reduce
the performance differences. Future work could explore targeted oversampling or
generative augmentation specific to SNCG-like minorities, potentially guided by
SHAP values. Future work could also include statistical testing for significance
of SHAP-derived feature interpretations, particularly with different imputation
methods, to better understand the effects of methods on biological meaning.
Additionally, a broader range of imputation methods could be evaluated, po-
tentially identifying optimal parameter thresholds or regions that consistently
deliver both strong performance and interpretability.

7 Conclusion

This thesis establishes that the choice of imputation method has a measurable,
and at times decisive, impact on classifier accuracy, robustness to class imbal-
ance, and biological interpretability. Distance-based (k-NN) and model-based
(MICE) imputation methods appear as the most reliable options, with soft im-
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putation (SoftImpute) offering an alternative to them. Simpler methods (mean,
median, random, rule-based) may be sufficient when speed is prioritized over
slight performance improvements, however the constant outlier method should
always be avoided. This shows that in multi-modal datasets, simply imputing
missing values with outliers and disregarding them is poor practice. This study
also highlights that preprocessing decisions play a critical role in biological data
science. They alter not only performance but also the biological interpretability
of the data. Notably, k-NN imputation preserved biologically meaningful dis-
tinctions between cell types by maintaining sharper feature boundaries across
classes, thus preserving interpretability and supporting more accurate biolog-
ical inferences. In contrast, simpler methods like mean imputation tended to
smooth out these distinctions, risking the loss of important patterns and limit-
ing the chance to make accurate biological interpretations. This also highlights
that the imputation method actively influences how each neuron is represented
and structured before being given to the model. If this representation is skewed,
the model will learn from data that no longer accurately reflects real-world bio-
logical variation. This misrepresentation can lead to misleading conclusions, re-
duced generalizability, and ultimately, a failure to capture the true complexity of
neuronal behavior. Therefore, thoughtful imputation is not just a preprocessing
step, but a foundational part of preserving biological meaning in computational
neuroscience. This becomes even more critical given the high likelihood that
such models will be used in medical applications in the future, where decisions
based on biologically inaccurate data could have serious consequences [36]. As
datasets become increasingly large and complex, the impact of data preprocess-
ing decisions will only become more significant [37]. Therefore, using thoughtful,
evidence-based imputation is a crucial step toward making sure our scientific
findings in neuroscience are robust and repeatable. In sum, by systematically
testing how imputation methods influence both predictive and explanatory as-
pects of neuronal classification, this thesis provides a solid foundation for scien-
tists and contributes to a more transparent and methodologically well-informed
phase of computational neuroscience. It concludes that imputation, class imbal-
ance, and interpretability should not be treated as completely separate tasks,
but rather as interconnected issues that need to be handled together.
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Fig. 11. Confusion Matrices - SoftImpute (left) and Mean (right)
Fig. 12. Confusion Matrices - Median (left) and Rule-Based (right)
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